Gas-phase distribution and emission of chloropicrin applied in gelatin capsules to soil columns.

نویسندگان

  • Qiuxia Wang
  • Dong Wang
  • Jueting Tang
  • Dongdong Yan
  • Hongjun Zhang
  • Fangyan Wang
  • Meixia Guo
  • Aocheng Cao
چکیده

Chloropicrin (CP) is highly volatile and may pose strong exposure risks for humans and the environment. A gelatin capsule formulation was developed to reduce atmospheric CP emissions and to improve application safety. The objective of this study was to determine the distribution, atmospheric emissions, and soil residual of CP after application in gelatin capsules to soil columns. Two treatments were studied: (i) CP liquid injection with polyethylene film and (ii) CP gelatin capsules with polyethylene film. For the CP liquid injection treatment, the concentration of CP peaked (120.7 microg cm(-3)) at the 20-cm depth 1 h after fumigant injection and decreased with time; at other depths, the CP concentration increased initially and decreased after a typical diffusion-dispersion process. For the gelatin capsule treatment, concentrations of CP at 20 cm depth increased slowly and peaked at 30.04 microg cm(-3) 264 h after application, indicating a slow CP release through the gelatin capsule shells. The results indicate that a rapid breakdown of gelatin capsules occurred between 11 and 12 d after application. The application of CP gelatin capsules reduced total CP emission by approximately 3 times compared with liquid injection with film cover. Similar residual soil CP was found between the liquid injection and the two gelatin capsule treatments. Chloropicrin gelatin capsules could be a promising new technology for reducing environmental emissions and potential human exposure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Emission, distribution and leaching of methyl isothiocyanate and chloropicrin under different surface containments.

The environmental fate of fumigants methyl isothiocyanate (MITC) and chloropicrin (CP) is of great concern for potential air and groundwater contamination while retaining sufficient concentrations for pest control efficacy. The emission, gas phase distribution, leaching, and persistence of MITC and CP were examined in repacked columns filled with sandy soils under three surface conditions: tarp...

متن کامل

Chloropicrin Emission Reduction by Soil Amendment with Biochar

Biochar has sorption capacity, and can be used to enhance the sequestration of volatile organic contaminants such as pesticides in soil. Chloropicrin (CP) is an important soil fumigant for the production of many fruit and vegetable crops, but its emissions must be minimized to reduce exposure risks and air pollution. The objective of this study was to determine the capacity of biochar to adsorb...

متن کامل

Effect of drip application of ammonium thiosulfate on fumigant degradation in soil columns.

Low permeability tarps can effectively minimize fumigant emissions while improving fumigation efficacy by retaining fumigants under the tarp. However, when planting holes are cut through the tarps, high-concentration fumigants may be released and result in environmental and worker safety hazards. In a 11-day column study, we explored the effect of drip irrigation application of ammonium thiosul...

متن کامل

Surface seals reduce 1,3-dichloropropene and chloropicrin emissions in field tests.

Reducing emissions is essential for minimizing the impact of soil fumigation on the environment. Water application to the soil surface (or water seal) has been demonstrated to reduce 1,3-dichloropropene (1,3-D) emissions in soil column tests. This study determined the effectiveness of water application to reduce emissions of 1,3-D and chloropicrin (CP) in comparison to other surface seals under...

متن کامل

Soil chamber method for determination of drip-applied fumigant behavior in bed-furrow agriculture: application to chloropicrin.

To overcome the environmental impacts of soil fumigant use, emission reduction strategies such as tarping can be adopted. There is a need to experimentally quantify the effectiveness of such strategies, preferably in a low-cost manner. We report the design and initial testing of a laboratory soil chamber approach for quantifying the soil distribution and emissions of fumigants from bed-furrow a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of environmental quality

دوره 39 3  شماره 

صفحات  -

تاریخ انتشار 2010